Experimental modeling of vertical dynamics of vehicles with controlled suspensions

> Mario Milanese and Carlo Novara Politecnico di Torino

> > Paolo Gabrielli FIAT Auto

Luigi Tenneriello Elasis, FIAT Group

Outline

- Introduction
- Experimental setting
- SM Structured identification method
- Application to identification of vehicles vertical dynamics
- Validation results
- Conclusions

Introduction

• Identification of vertical dynamics of vehicles with controlled suspensions is considered.

Goal:

Derive a model with: Inputs: road profile and control currents Outputs: chassis and wheels accelerations

- C-segment prototype vehicle with controlled dampers and a CDC-Skyhook (continuous damping control) system.
- Measurements are performed on a four-poster test bench of FIAT-Elasis Research Center.

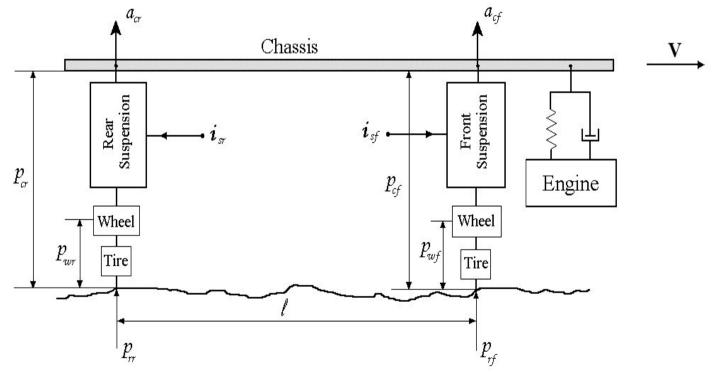
CDC-Skyhook control settings:

- Constant hard (CH): dampers currents on average zero, maximum dampening effect.
- Hard (H): dampers current modulated by the CDC-Skyhook, "sporting" calibration.
- Soft (S): dampers current modulated by the CDC-Skyhook, "comfort" calibration.
- Constant soft (CS): dampers currents on average maximum, minimum dampening effect.

Road profiles:

- Random: random road.
- English Track: road with irregularly spaced holes and bumps.
- Short Back: impulse road.
- Motorway: level road.
- Pavé track: road with small amplitude irregularities.
- Drain well: negative impulse road.

Note: The road profiles are symmetric (left=right).



Data set: 93184 data, collected with a sampling frequency of 512 Hz, partitioned as follows:

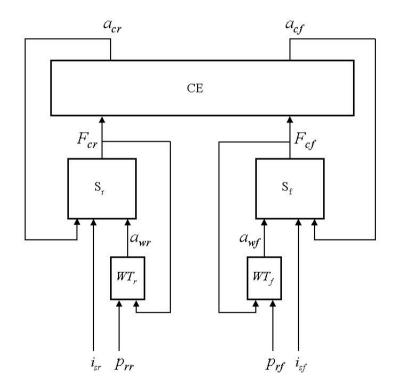
- Identification set: first 7 seconds of each acquisition. Used for model identification.
- Testing set: seconds from 7 to 14 of each acquisition. Used for model testing.

Since the road profiles are symmetric, a Half-car model has been considered:

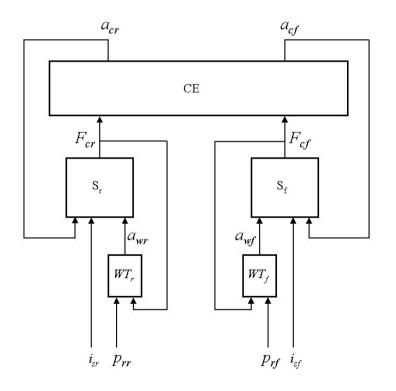
- Usual identification approaches use physical laws to derive the structure of the model.
- Parameters of the model are tuned using experimental data.
- Accuracy of models obtained by such an approach resulted to be not quite satisfactory, mainly due to the complexity of physical laws.

Input-output (black-box) models

 Still not sufficiently accurate modeling is obtained, mainly due to the large dimension of required regressor space.

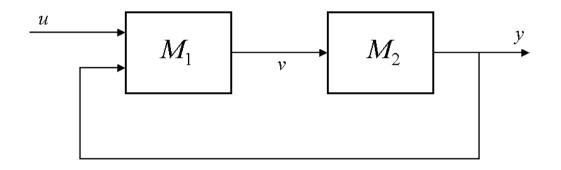

Structured identification

 The high-dimensional problem is reduced to the identification of lower dimensional subsystems and to the estimation of their interactions


Structure decomposition:

- CE: chassis + engine
- S: suspension
- WT: wheel + tire

Structure decomposition:


Measured variables:

- *p_{rf}* and *p_{rr}*: front and rear road profiles.
- i_{sf} and i_{sr} : control currents of front and rear suspensions.
- a_{cf} and a_{cr} : front and rear chassis vertical accelerations.
- a_{wf} and a_{wr} : front and rear wheels vertical accelerations.

Note: F_{cf} and F_{cr} are not measured.

Structured identification

Note: F_{c^*} are not known.

First level: M_2 is CE M_1 composed of: $S_f S_r WT_f WT_r$ $u=[p_{rf}p_{rr} i_{sf} i_{sr}]$ $y=[a_{cf} a_{cr}]$ $v=[F_{cr} F_{cf}]$ Second level:

 $M_{2} \text{ is } S_{*}$ $M_{1} \text{ is } WT_{*}$ $u = [p_{r^{*}} i_{s^{*}} a_{c^{*}}]$ $y = [F_{c^{*}}]$ $v = [a_{w^{*}}]$

* stands for *r* or *f*.

Structured identification

• The identification problem is solved by means of the iterative algorithm proposed in: M. Milanese and C. Novara, "Structured experimental modeling of complex nonlinear systems", IEEE CDC 2003, Maui, USA.

Iterative identification algorithm:

- Initialisation: get an initial guess $M_2^{(0)}$ of M_2
- Step k:
- 1) Compute $v^{(k)}$ such that $M_2^{(k-1)}[v^{(k)}]=y$
- 2) Identify $M_1(k)$ using *u* and *y* as inputs, $v^{(k)}$ as output
- 3) Identify $M_2^{(k)}$ using $v^{(k)} = M_1^{(k)}[u, y]$ as input, y as output and return to step 1)

Key feature: The identification error is decreasing for increasing iteration.

Nonlinear SM identification

• Identification of the nonlinear system *M*₇ is performed using the Nonlinear Set Membership method.

Key features:

- No assumptions on the functional form of the regression model are required. Regularity assumptions are used.
- No statistical assumptions on noise are made. Noise is only supposed to be bounded.
- The complexity/accuracy problems posed by the choice of the parametrization of the nonlinear regression are circumvented.

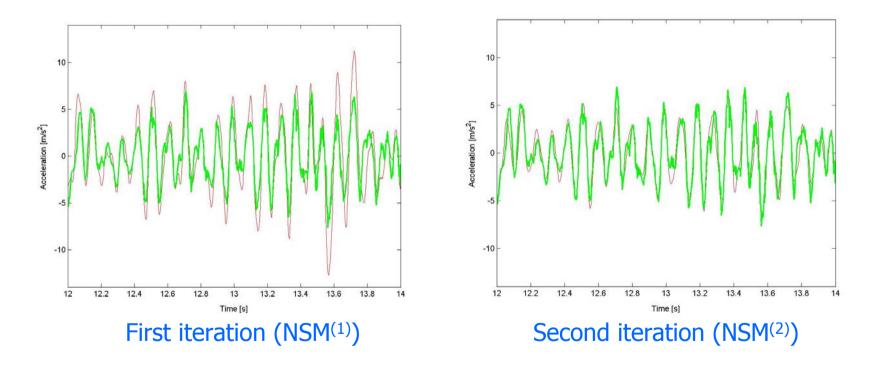
Reference: M. Milanese and C. Novara, "Optimality in SM Identification of Nonlinear Systems", IFAC SYSID 2003, Rotterdam, the Netherlands.

NSM^(k): model identified at iteration k. RMSE: Root Mean Square Acceleration Error on the testing set.

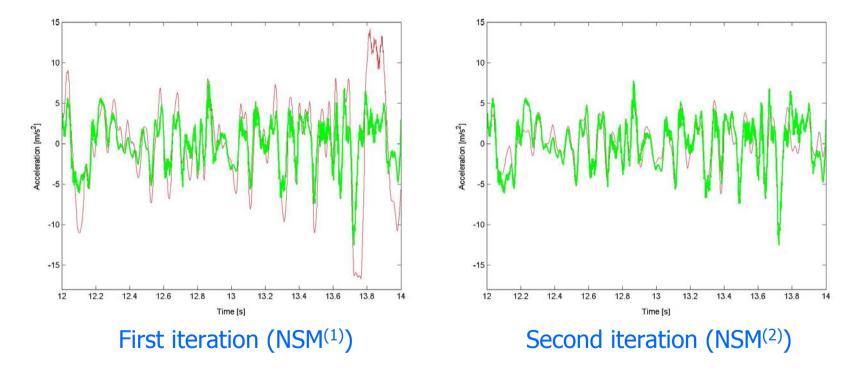
Model	RMSE	RMSE	
	(front chassis)	(rear chassis)	
NSM ⁽¹⁾	2.85	3.53	
NSM ⁽²⁾	0.72	1.19	

Note: A third iteration has been also performed, but no significant decrease of errors has been observed.

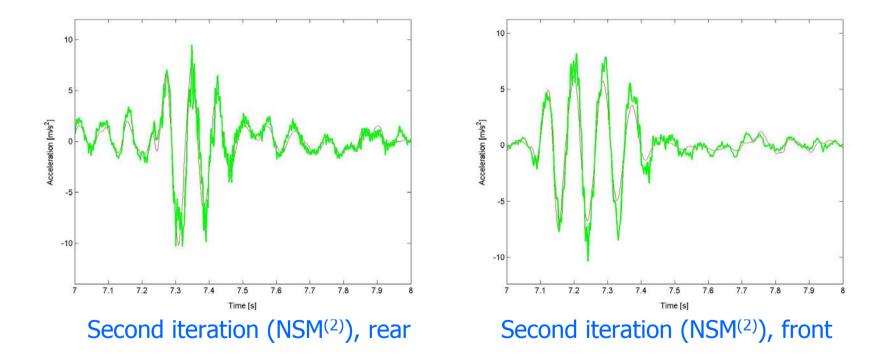
Road profile	Sky-hook setting	RMSE (front chassis) NSM ⁽²⁾	RMSE (rear chassis) NSM ⁽²⁾
Random	СН	1.02	1.75
Random	H	0.46	0.73
Random	S	0.44	0.70
Random	CS	0.57	0.77
En. track	СН	1.35	1.91
En. track	Н	0.87	1.34
En. track	S	0.88	1.36
En. track	CS	0.83	1.46
Short back	S	0.43	1.04
Motorway	СН	0.27	0.52
Motorway	CS	0.32	0.41
Pavé	СН	0.70	1.31
Drain well	S	0.33	0.94



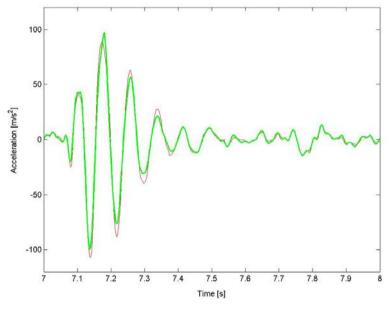
Road profile	Sky-hook setting	RMSE (front wheel) NSM ⁽²⁾	RMSE (rear wheel) NSM ⁽²⁾
Random	СН	3.18	5.14
Random	Н	1.90	4.66
Random	S	1.79	3.90
Random	CS	2.90	4.46
En. track	СН	3.90	8.12
En. track	H	3.67	9.79
En. track	S	3.81	9.83
En. track	CS	5.69	12.71
Short back	S	4.57	6.57
Motorway	СН	1.08	1.47
Motorway	CS	1.64	2.09
Pavé	СН	1.76	3.80
Drain well	S	3.09	4.65



Chassis front accelerations on the random road profile with CH skyhook configuration: measurements (green line), model (red line)



Chassis rear accelerations on the random road profile with CH sky-hook configuration: measurements (green line), model (red line).



Chassis accelerations on the english track road profile with H sky-hook configuration: measurements (geen line), model (red line).

Front wheel acceleration on the english track road profile with H skyhook configuration: measurements (green line), model (red line).

Second iteration (NSM⁽²⁾)

Conclusions

- Modeling of vertical dynamics of vehicles equipped with a CDC-Skyhook dampers control system has been considered.
- Identification has been performed by means of the Set Membership structured identification method which uses:
 - physical information on the structure of the system
 - nonlinear black-box identification techniques.
- The identified model, tested on a set of data not used for identification, provided quite satisfactory simulation accuracy for all the considered road profiles and Skyhook settings.

